
Yet Another Compiler-Compiler

Automatic generation of CF
parsers

YACC – Yet Another Compiler-Compiler
•  YACC (Bison) is a parser generator for LALR(1) grammars
▫  Given a description of the grammar generates a C source for the parser

•  The input is a file that contains the grammar description with a
formalism similar to the BNF (Backus-Naur Form) notation for
language specification
▫  non terminal symbols – lowercase identifiers

  expr, stmt
▫  terminal symbols– uppercase identifiers or single characters

  INTEGER, FLOAT, IF, WHILE, ‘;’, ‘.’
▫  Grammar rules (production rules)

  expr: expr ‘+’ expr | expr ‘*’ expr ; E → E+E|E*E

Language processing
technologies

Marco Maggini

2

YACC – values and actions

•  A data type and a semantic values is associated to each element
▫  Data type: INTEGER, IDENTIFIER
▫  Value: the numeric value of the integer, the reference of the identifier in

the symbol table
•  A value can be associated also to syntactic categories
▫  The result of the evaluation of an arithmetic expression

•  Actions correspond to C code associated to each production rule
▫  When a production rule is used for a reduction the associated action is

executed
▫  In general the action is used to combine the values associated to the

elements in the right side of the production rule to obtain the values
associated to the non terminal symbol in the left side
  expr: expr ‘+’ expr { $$ = $1 + $3;};
 1 2 3

Language processing
technologies

Marco Maggini

3

YACC – integration with the lexical scanner
•  A lexical scanner is exploited to detect the terminal symbols in the

parsed file
▫  The parser generated by YACC makes a call to the lexical scanner when it

needs to read the next terminal symbol for the input

•  The parse is implemented by the function yyparse() that needs the
support of the lexical scanner (e.g. yylex()), the error handling
functions and the caller procedure

Language processing
technologies

Marco Maggini

4

input
file

Lexical
scanner Parser

next token

INTEGER
IDENTIFIER

….

actions

Grammar file
•  The grammar is defined in a text file (usually with extension .y)

Language processing
technologies

Marco Maggini

5

%{

C declarations (include/define/global variables)

%}

YACC definitions (terminal/non-terminal symbols and their properties)

%%

grammar ruels and associated actions

%%

C code (it is copied into the generated file after the yyparse() function)

Terminal symbols
•  They are a class of equivalent elements from the syntax point of view
▫  they are represented by numerical codes associated to their identifier

  In C language they correspond to a set of #define statements
  The lexical scanner yylex() must return the code corresponding to the class of

the element matched in the input text (the lex option –d is used to generate the
file xx.tab.h that contains the defines for the terminal symbol classes)

while return WHILE; /* lex rule */

  The terminal symbols are declared in the YACC declaration section

%token WHILE

  The literal tokens are used as the corresponding character constants in C
(f.i. ‘+’) and there is not required to declare them explicitly unless there is the
need to specify the associated data type, their precedence or associative
property (the associated code is the corresponding ASCII ancoding)

Language processing
technologies

Marco Maggini

6

Rule definition- 1

•  A grammatical rule has the following structure

result: components….. ;

▫  <result> is the non terminal symbol to which the right side of the
production rule is reduced

▫  The right side of the production rule is a sequence of components that
consist of terminal symbols, non terminal symbols and actions (C code
between {…})

Language processing
technologies

Marco Maggini

7

expr: expr ‘+’ expr {$$=$1+$3; }

ACTION

terminal
symbol

Rule definition- 2

•  Alternative reductions for the same non terminal symbol can be listed

•  If the right side of the production rule is empty, the rule is satisfied by the
empty string

•  The rule is recursive if the terminal symbol in the left side (<result>)
appears also in the right side (it is better to avoid right recursion...)

Language processing
technologies

Marco Maggini

8

expr: expr ‘+’ expr {$$=$1+$3} |

 expr ‘*’ expr {$$=$1*$3} ;

expr: /* empty */ |

 expr1 ;

exprseq: expr |

 exprseq ‘,’ expr ;

Semantics definition- 1

•  The semantics depends on the values associated to the grammar
tokens and on the actions that are caused by a reduction (when a
production rule is selected)

▫  By default the int data type is associated to any symbol
▫  Another C data type can be associated to all the symbols by the

declaration in the C section
#define YYSTYPE <tipoC>

Language processing
technologies

Marco Maggini

9

expr ‘+’ expr

expr

The execution of the rule

expr: expr ‘+’ expr;

must assign to the symbol expr, resulting
from the reduction, the value of the sum
of the values associated to the two expr
symbols in the right side

Semantics definition- 2

•  If different data types are to be used for different symbols
▫  The completed list of data tyeps must be specified in the YACC

declarations

▫  One of the declared data types is associated to a terminal/non terminal
symbol with a the declarations %token and %type

Language processing
technologies

Marco Maggini

10

%union {
double val;
char *sptr;
}

Names associated to types in YACC C types

%token <val> NUM

%type <sptr> string_ass

Semantics definition- 3

•  The action is a C code block that is executed when a production rule is
applied (reduction)
▫  Actions can also appear between the symbols in the string of the right

side of the production rule and, in this case, they are executed when the
rule is partially matched (this makes rules less clear to understand)

▫  The action C code can refer the semantic values associated to the rule
tokens

  The value of the n-th token is associated to the identifier $n
  $$ represents the left side value
  If no action is specified then $$=$1 by default
  The data type of $n is that declared for the corresponding token (it can be

eventually casted with $<type>n)

Language processing
technologies

Marco Maggini

11

expr: expr ‘+’ expr {$$=$1+$3} ;
 $$ $1 $3

YACC declarations
•  All the terminal symbols that do not correspond to single characters

should be declared
▫  The directive %token ID is used (if generates a #define)
▫  It is possible to specify the precedence and the type of associative

property (left/right) for the operators to simplify the grammar

▫  The operator precedence depends on the order of declarations

Language processing
technologies

Marco Maggini

12

%left symbols
%left <type>symbols
%right symbols
%right <type>symbols
%nonassoc symbols

x op y op z : (x op y) op z

x op y op z : x op (y op z)

x op y op z : syntax error

%left ‘+’ ‘-’
%left ‘*’ ‘/’

priority
+

-

The interface with C
•  The parse function yyparse() reads terminal symbols, executes the

actions and returns when
▫  The end of file is reached (return value 0)
▫  A fatal syntax error is found (return value 1)
▫  The macro YYACCEPT (return value 0) or YYABORT (return value 1) are

called in an action
•  The terminal symbols are detected by the lexical scanner – f.i.

yylex() - that returns the corresponding code (ASCII code or YACC
#define value)
▫  The eventual semantic value associated to the terminal symbol must be

stored into the global variable yylval
▫  If a single data type YYSTYPE is used in YACC, then yylval is of type

YYSTYPE, otherwise it is a C union data structure

Language processing
technologies

Marco Maggini

13

The interface with C - yylval
•  If yylval is of a single data type, in lex its value will be assigned as

•  If more data type are used

▫  If the assigned value is a pointer, the address should be in the global
memory space or in the heap (dynamic allocation with malloc)

Language processing
technologies

Marco Maggini

14

 ….
 yylval = value;
 return ID;
}

 ….
 yylval.sptr = string;
 return STRING;
}

%union {
 double val;
 char *sptr;
}

Error handling- 1

Language processing
technologies

Marco Maggini

15

Error handling - 2
•  After the call to yyerror() the parser tries to recover from the error

condition if a error recover function is implemented, otherwise it
exists yyparse returning 1

•  The variable yynerrs stores the number of encountered errors (it is a
global variable for non-reentrant parsers)

•  In general it is preferable to avoid halting the parser at the first error
▫  The error handling policy can be defined by exploiting the special

terminal symbol error in the production rule
▫  The special symbol error is generated by the parser every time that a

syntax error is found

Language processing
technologies

Marco Maggini

16

Error handling- 3

•  If there is an error in exp
▫  Some incomplete derivations in the parser stack and terminal symbols in the

input are likely to be found before an input ‘\n’ is matched
▫  The parser forces the application of the rule removing part of the syntactical

context from the stack and the input
  it removes states and objects from the stack until the rule containing error is matched (it

finds the previous stmt)
  it pushes the symbol error into the stack
  it reads input symbols until it finds a matching lookahead terminal symbol (‘\n’ in this

case)

Language processing
technologies

Marco Maggini

17

stmt: /* empty */ |
 stmt ‘\n’ |
 stmt exp ‘\n’ |
 stmt error ‘\n’

Error handling – the art of…
•  In general it is difficult to decide (and implement) an optimal

strategy for error handling
▫  For instance the remaining part of the input line or the current command

can be skipped in case of an error
▫ 

▫  We can try to balance the parentheses to avoid chained errors correlated
to the first one

Language processing
technologies

Marco Maggini

18

stmt: error ‘;’ /* in presence of an error move
 to the next “;” */

item: ‘(‘ expr ‘)’
 | ‘(‘ error ‘)’ /* it detects and error in expr
 without generating errors for
 parenthesis balancing */

Error handling– the art of… 2
•  If the wrong error policy si used, a syntax error can be the cause of

another one...

•  To avoid an uncontrolled generation of error messages the parser
does not report new error messages for a syntax error that is found
just after the last one (at least two new symbols are to be read to
generate a new error)

•  The reporting of error messages can be reactivated by the call of the
function yyerrok in the action

Language processing
technologies

Marco Maggini

19

An example- calculator
•  Parser to implement the operations of a multifunction calculator

that has the following features
▫  Arithmetic operators (‘+’, ‘-’, ‘*’, ‘/’,’^’)
▫  Predefined functions (sin, cos, exp, log,…) to be invoked as f(x)
▫  Variables with variable names and assignments (v=1)

•  Source file for YACC/Bison
•  Source file for LEX
•  Utility file in C (symbol table management)

•  The parser C source is generated by the command bison –d calc.y
▫  The genearted files are calc.yy,tab.c and calc.yy.tab.h

Language processing
technologies

Marco Maggini

20

Parser generators
•  Several generators for lexical scanners/syntactical parsers are

available
▫  They generate source code for different target languages
▫  They implement different parsing strategies

▫  BYACC/J generates LALR(1) parsers in Java
▫  Coco/R generates LL(k) parsers in C, C++, C#, Java, Pascal…
▫  CUP generates LALR(1) parsers in Java
▫  JavaCC generates LL(k) parsers in Java
▫  Lime generates LALR(1) parsers in PHP
▫  …..

▫  See http://en.wikipedia.org/wiki/Comparison_of_parser_generators

Language processing
technologies

Marco Maggini

21

